TP N°5 : Haute disponibilité et tolérance aux pannes d'un serveur web avec HEARTBEAT

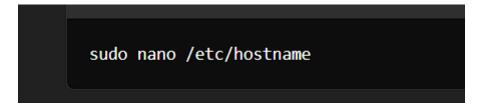
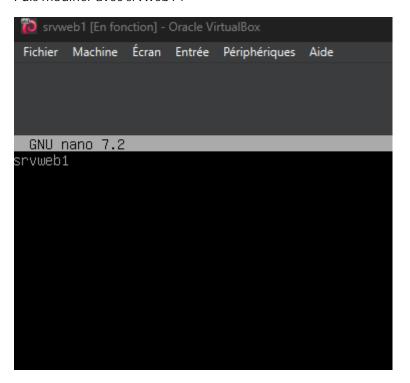
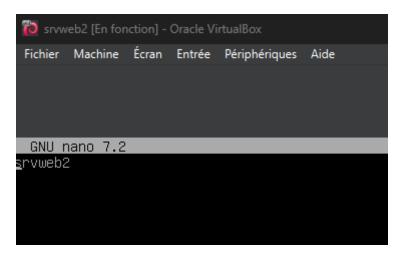


Table des matières


Etape 1: Création d'un second serveur web nommé « SRVWEB2 »	2
Etape 2 : Mise à jour des fichiers de configuration d'Apache 2.0 des deux serveurs web	5
Etape 3 : Création et configuration du cluster de serveurs web avec Hearbeat	7
Étape 4 : Testez la haute disponibilité du site web de la ville des Abymes	11

Étape 1 : Création d'un second serveur web nommé « SRVWEB2 »

Modification de "l'hostname" du serveur web 1 :


Puis modifier avec srvweb1:

Modification de "l'hostname" du serveur web 2 :

sudo nano /etc/hostname

Puis modifier avec srvweb2:

Modification du plan d'adressage IP du serveur web 1 :

Accéder au interfaces réseau grâce à la commande suivante :

```
nano /etc/network/interfaces
```

Puis ajouter ou modifier des lignes pour ce résultat :

```
# This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface auto lo iface lo inet loopback

# The primary network interface allow-hotplug enp0s3 iface enp0s3 inet static

address 192.168.10.14 netmask 255.255.255.0 gateway 192.168.10.1
```

Modification du plan d'adressage IP du serveur web 2 :

Accéder au interfaces réseau grâce à la commande suivante :

Puis ajouter ou modifier des lignes pour ce résultat :

```
### This file describes the network interfaces available on your system ### and how to activate them. For more information, see interfaces(5).

### The loopback network interface auto lo iface lo inet loopback

#### The primary network interface allow-hotplug enp0s3 iface enp0s3 inet static

#### address 192.168.10.15 netmask 255.255.255.0 gateway 192.168.10.1
```

Étape 2 : Mise à jour des fichiers de configuration d'Apache 2.0 des deux serveurs web

Modification apportée pour le site du srvweb1 :

Modification apportée pour le site du srvweb2 :

Test d'accessibilité aux différents sites :

Pour tester la connectivité des différents sites il faut utiliser le navigateur d'un client et y taper les IP des serveurs pour accéder aux pages HTML.

Site SRVWEB1:

Bienvenue sur le site n°1 de la ville des abymes

Bienvenue sur le site n°2 de la ville des abymes

Étape 3 : Création et configuration du cluster de serveurs web avec Hearbeat

Configuration de "/etc/hosts/":

SRVWEB1:

```
GNU nano 7.2

127.0.0.1 localhost

127.0.1.1 srvweb1

192.168.10.15 srvweb2

# The following lines are desirable for IPv6 capable hosts

::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters
```

SRVWEB2 :

```
GNU nano 7.2

127.0.0.1 localhost

127.0.1.1 srvweb2

192.168.10.14 srvweb1

# The following lines are desirable for IPv6 capable hosts

::1 localhost ip6-localhost ip6-loopback

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters
```

Le fichier /etc/hosts permet la résolution des noms de domaine, en permettant de traduire un nom d'hôte en adresse IP sans passer par un serveur DNS.

Test de communication entre les serveurs à partir de leurs noms d'hôtes

SRVWEB1:

```
root@srvweb1:/etc/ha.d# ping srvweb2
PING srvweb2 (192.168.10.15) 56(84) bytes of data.
64 bytes from srvweb2 (192.168.10.15): icmp_seq=1 ttl=64 time=0.472 ms
64 bytes from srvweb2 (192.168.10.15): icmp_seq=2 ttl=64 time=0.407 ms
64 bytes from srvweb2 (192.168.10.15): icmp_seq=3 ttl=64 time=0.637 ms
^C
--- srvweb2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 0.407/0.505/0.637/0.096 ms
root@srvweb1:/etc/ha.d#
```

Le ping à fonctionner.

SRVWEB2:

```
root@srvweb2:/etc/ha.d# ping srvweb1
PING srvweb1 (192.168.10.14) 56(84) bytes of data.
64 bytes from srvweb1 (192.168.10.14): icmp_seq=1 ttl=64 time=1.31 ms
64 bytes from srvweb1 (192.168.10.14): icmp_seq=2 ttl=64 time=0.395 ms
64 bytes from srvweb1 (192.168.10.14): icmp_seq=3 ttl=64 time=0.735 ms
C
--- srvweb1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2217ms
rtt min/avg/max/mdev = 0.395/0.813/1.309/0.377 ms
root@srvweb2:/etc/ha.d#
```

Le ping à fonctionner.

Création du fichier ha.cf sur les sryweb1 et 2 grâce a la commande ci-dessous :

```
root@srvweb1:/etc/ha.d# nano ha.cf _
```

Contenu du fichier:

```
GNU nano 7.2
bcast enp0s3
warntime 4
deadtime 5
initdead 15
keepalive 2
auto_failback on
node SRVWEB2
```

Indication des rôles des lignes de ce fichier :

bcast enp0sX

→ Définit la méthode de communication entre les nœuds du cluster.

warntime 4

→ Définit le temps (en secondes) avant qu'un avertissement ne soit généré si un nœud ne répond plus.

deadtime 5

→ Indique le temps (en secondes) après lequel un nœud est considéré comme "mort" s'il ne répond plus.

initdead 15

→ Spécifie le délai d'attente (en secondes) après le démarrage du cluster avant de considérer un nœud comme inactif. Cela permet d'éviter des bascules prématurées après un redémarrage.

keepalive 2

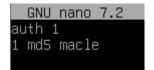
→ Définit l'intervalle (en secondes) entre deux messages Heartbeat envoyés aux autres nœuds.

auto_failback on

→ Active le **retour automatique** des services sur le nœud principal lorsqu'il redevient disponible après une panne.

node SRVWEB1

→ Déclare SRVWEB1 comme un nœud du cluster.


node SRVWEB2

→ Déclare SRVWEB2 comme un autre nœud du cluster.

Création du fichier authkeys sur les srvweb1 et 2 grâce a la commande ci-dessous :

root@srvweb2:/etc/ha.d# nano authkeys

Contenu du fichier:

Indication des rôles des lignes de ce fichier :

auth 1 → Cette ligne définit un identifiant d'authentification (1), qui sera utilisé pour sécuriser les communications entre les nœuds du cluster.

1 → Identifiant de la clé d'authentification.

md5 → Indique que l'algorithme MD5 est utilisé pour sécuriser les communications entre les nœuds du cluster.

macle → C'est la clé secrète partagée utilisée pour sécuriser les échanges.

Modification des droits d'accès du fichier authkeys :

Cette commande sert à modifier les permissions du fichier authkeys.

600 signifie que:

- 6 (lecture et écriture pour le propriétaire)
- 0 (aucune permission pour le groupe)
- 0 (aucune permission pour les autres utilisateurs)

Changer les droits d'accès au fichier authkeys est une **mesure de sécurité** pour protéger les clés d'authentification utilisées par **Heartbeat**.

Création du fichier haresources sur les srvweb1 et 2 grâce a la commande ci-dessous :

Indication des rôles des lignes de ce fichier :

SRVWEB1

→ Nom du serveur (hôte) dans la configuration Heartbeat.

192.168.X.4/24/enp0sX

- 192.168.X.4/24: Adresse IP du serveur avec son masque
- enp0sX : Interface réseau sur laquelle Heartbeat va gérer cette IP flottante.

:0

• Indique que l'IP flottante sera associée à l'alias de l'interface réseau principale (eth0:0 ou enp0sX:0).

apache2

• Indique que Heartbeat doit gérer le service **Apache2**.

Étape 4 : Testez la haute disponibilité du site web de la ville des Abymes

SRVWEB1:

```
Fichier Machine Écran Entrée Périphériques Aide

Proot@srvweb1:/etc/ha.d# ping 192.168.10.15

PING 192.168.10.15 (192.168.10.15) 56(84) bytes of data.

54 bytes from 192.168.10.15: icmp_seq=1 ttl=64 time=0.399 ms

54 bytes from 192.168.10.15: icmp_seq=2 ttl=64 time=0.382 ms

54 bytes from 192.168.10.15: icmp_seq=3 ttl=64 time=0.502 ms

C--- 192.168.10.15 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2134ms

root@srvweb1:/etc/ha.d# ping 192.168.10.4

PING 192.168.10.4 (192.168.10.4) 56(84) bytes of data.

54 bytes from 192.168.10.4: icmp_seq=1 ttl=64 time=0.041 ms

54 bytes from 192.168.10.4: icmp_seq=2 ttl=64 time=0.048 ms

54 bytes from 192.168.10.4: icmp_seq=2 ttl=64 time=0.061 ms

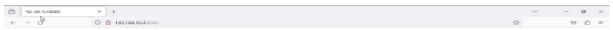
C--- 192.168.10.4 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2041ms

rtt min/avg/max/mdev = 0.041/0.050/0.061/0.008 ms

root@srvweb1:/etc/ha.d# __
```

SRVWEB 2:


Tous les pings ont été un succès, on peut en déduire que l'adresse IP virtuel qui créé une liaison entre les deux serveurs est en état de marche.

Test de la haute disponibilité :

Pour tester la haute disponibilité nous allons accéder à la page html via le client avec l'IP virtuelle comme ci-dessous

Puis maintenant on éteint le SRVWEB1 et on rafraichit la page on a le résultat ci-dessous :

Bienvenue sur le site n°2 de la ville des abymes

La page affiche le contenue HTML du SRVWEB2 cela affirme le bon fonctionnement de la haute disponibilité.